Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-manifolds Ii
نویسندگان
چکیده
In a previous paper, the authors showed that metrics which are asymptotic to Anti-de Sitter-Schwarzschild metrics with positive mass admit a unique foliation by stable spheres with constant mean curvature. In this paper we extend that result to all asymptotically hyperbolic metrics for which the trace of the mass term is positive. We do this by combining the Kazdan-Warner obstructions with a theorem due to De Lellis and Müller.
منابع مشابه
Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-manifolds
We prove existence and uniqueness of foliations by stable spheres with constant mean curvature for 3-manifolds which are asymptotic to Anti-de Sitter-Schwarzschild metrics with positive mass. These metrics arise naturally as spacelike timeslices for solutions of the Einstein equation with a negative cosmological constant.
متن کاملOn the Uniqueness of the Foliation of Spheres of Constant Mean Curvature in Asymptotically Flat 3-manifolds
Abstract. In this note we study constant mean curvature surfaces in asymptotically flat 3-manifolds. We prove that, outside a given compact subset in an asymptotically flat 3-manifold with positive mass, stable spheres of given constant mean curvature are unique. Therefore we are able to conclude that there is a unique foliation of stable spheres of constant mean curvature in an asymptotically ...
متن کاملGeometric Evolution Equations and Foliations on Quasi-fuchsian Three-manifolds
For any quasi-Fuchsian 3-manifold M which contains an incompressible closed surface with principal curvatures in the range of (−1, 1), we use method of geometric evolution equations to prove that it admits a unique foliation of constant mean curvature surfaces on M . Applications include uniqueness of prescribed constant mean curvature surfaces, and an upper bound for the hyperbolic volume of t...
متن کاملStable constant mean curvature hypersurfaces in some Riemannian manifolds
We determine all stable constant mean curvature hypersurfaces in a wide class of complete Riemannian manifolds having a foliation whose leaves are umbilical hypersurfaces. Among the consequences of this analysis we obtain all the stable constant mean curvature hypersurfaces in many nonsimply connected hyperbolic space forms. Mathematics Subject Classification (1991). Primary 53A10; Secondary 49...
متن کاملConstant curvature foliations in asymptotically hyperbolic spaces
Let (M, g) be an asymptotically hyperbolic manifold with a smooth conformal compactification. We establish a general correspondence between semilinear elliptic equations of scalar curvature type on ∂M and Weingarten foliations in some neighbourhood of infinity inM . We focus mostly on foliations where each leaf has constant mean curvature, though our results apply equally well to foliations whe...
متن کامل